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1 Introduction

This document presents additional results from my reanalysis of Moretti (2021a,b). Section

2.3 shows the corrected event study that I refer to in Wiebe (2023). The remainder of the

section explores the event study using a DD and DDD with either a binary or continuous

treatment variable, and using the imputed sample. Section 3 shows the IV regressions using

the instrument defined in levels, also referred to in Wiebe (2023).

Section 4 reproduces the original Table 3, including a regression with a firm-year fixed effect.

In Section 5, I show that cluster size is negatively correlated with patents for the bottom 90%

of inventors. Using an interaction term instead of a subsample regression, the negative effect

disappears, but the positive effect for top 10% inventors is much smaller. Section 6 shows that

the effect size is smaller for movers compared to stayers. Section 7 investigates heterogeneity

by field using an interaction regression, and finds less variation than the subsample regressions

in Moretti’s Table A2. Section 8 investigates heterogeneity by time period, and shows that the

effect is larger in years 1996-2007.

In Section 9, I explore whether geographic proximity is the underlying mechanism, by

running a horse race of inventors in the same field from own-city vs. other-city. The results

suggest geographic proximity drives patenting. Section 10 performs a similiar horse race for

own-firm vs other-firm inventors, with inventors at other firms having a larger effect.

Moretti counts inventors by counting patents. If an inventor does not patent in a year,

they do not contribute to measured cluster size. Moretti addresses this partially by imputing

missing observations for gaps of length 1 and 2. In Section 11, I extend this by imputing gaps

of all lengths. The effects are slightly larger, plausibly capturing a positive extensive margin.

Formally modelling the intensive and extensive margins would be informative.

Section 12 investigates bias from aggregating the data from patent level to inventor-year

level. Patents are assigned to an inventor’s modal cluster, and modal clusters are larger,

generating a small upward bias. In Section 13, I redo the Table A7 results on varying the

time unit, since Moretti does not fully reconstruct the data at the new time unit. Moretti finds

negative results for shorter time units, but does not provide a compelling explanation.
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2 Event study

2.1 Original event study

To test for sorting, Moretti performs an event study using variation in cluster size from inventors

who move across cities exactly once. That is, ‘stayers’ who never move are excluded, so the

event study does not have a never-treated group. To generate a treatment-control comparison,

Moretti uses average cluster size before and after the move as a continuous treatment variable.

Specifically, Moretti interacts pre-move average cluster size with the pre-move event-time indicators,

and post-move average cluster size with the post-move event-time indicators.1 The implied

regression equation is

lnyijfct =
−1∑

s=−5

βsSize
pre
−ifc × 1{t = s}+

5∑
s=0

βsSize
post
−ifc × 1{t = s}

+ dcf + dck + dft + dkt + dct + di + dj + εijfkct.

(1)

Here y is the number of patents by inventor i in firm j, research field f , city c, and year t; k is

the research class.

The original event study does not interact the treatment variable with a t = 0 indicator, but

uses time-varying cluster size. Hence, β0 is estimated using data from all event-years, instead

of capturing the effect in t = 0. I correct the code in Figure 1 by interacting post-move cluster

size with the t = 0 indicator. (This is the graph reported in Wiebe (2023).)

1Moretti excludes t = 0 when calculating post-move average cluster size, despite being the inventor’s first

year in the new city.
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Figure 1: Replication and correction of Figure 6 event study

Note: Event study coefficients from Equation 1. Original estimates β0 using time-varying Size−ifct and without
interacting with 1{t = 0}. Corrected estimates β0 using Sizepost−ifc × 1{t = 0}; following Moretti, Sizepost−ifc is
calculated excluding t = 0. N=18433 in Original, N=18434 in Corrected. Standard errors are clustered by city
× research field. Moretti’s Figure 6 switches the leads and lags, for example, putting β−5 as the last coefficient
and β5 as the first.
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2.2 Include t = 0 in post-move average cluster size

In Figure 2 I define Sizepost−ifc to include t = 0. The effect in t = 0 is similar, but slightly smaller.
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Figure 2: Replication and correction of Figure 6 event study

Note: Event study coefficients from Equation 1. Original estimates β0 using time-varying Size−ifct and without
interacting with 1{t = 0}. Corrected estimates β0 using Sizepost−ifc × 1{t = 0}. Sizepost−ifc is calculated including
t = 0. N=25529 in Original, N=25530 in Corrected. Standard errors are clustered by city × research field.
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2.3 Corrected event study

I recode the event study in Figure 3 to follow standard practices. I use a constant treatment

variable (difference in average cluster size before and after the move: Size-diff−ifc = Sizepost−ifc −
Sizepre−ifc) where average post-move size is calculated including year 0; interact the treatment

variable with all year indicators; omit t−1 as a reference year2; and restrict the sample to event

years [-5,5].

I find a null result. Curiously, the width of the confidence intervals jumps in t = 0. This

seems to be caused by the combination of using a constant treatment variable and using a fully

saturated regression (ie. restricting the [-5,5] and including all interactions). One intuitive

explanation is heterogeneous treatment effects by inventors who move to larger vs smaller

cities. But this is not heterogeneity, since a constant treatment effect is consistent with a drop

in patents for inventors moving to a smaller city, and an increase in patenting for inventors

moving to a larger city. Let me know if you can figure out an explanation for this.

Figure 3: Corrected event study

-.3

-.2

-.1

0

.1

.2

β(-5) β(-4) β(-3) β(-2) β(-1) β(0) β(1) β(2) β(3) β(4) β(5)

Note: Event study coefficients with five differences from Moretti’s Fig. 6: (1) I use a constant treatment variable:
the difference in average cluster size before and after the move, defined using event years [-5,5]. (2) Average
post-move size is calculated including year 0. (3) I interact the treatment variable with all year indicators,
including t = 0. (4) I omit t− 1 as the reference year. (5) I restrict the sample to event years [-5,5]. N=15198.
Standard errors are clustered by city × research field.

2In the original specification, years outside of [-5,5] are used as the reference period.
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2.4 Binary treatment variable

In Figure 4 I use Move-up = 1{Size-diff > 0} as a binary treatment variable, instead of the

continuous Size-diff. This produces a small positive effect, but with a pre-trend.

Figure 4: Event study: binary treatment variable
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Note: N=15214. Standard errors are clustered by city × research field.
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2.5 DDD including stayers

Moretti’s event study uses a sample of movers, so there are no never-treated observations. Here

I include stayers (non-movers), which allows me to run a triple-difference:

• Binary: Post + Move-up × Post

• Continuous: Post + Size-diff × Post

The DD compares move-up and move-down, with no control group, while the DDD compares

move-up and move-down relative to stayers. Note that Move-up is a subset of Mover, so Mover

× Move-up = Move-up. Post is nonconstant for movers, so Mover × Post = Post. Also note

that Postt is not collinear with year fixed effects, since it is always 0 for stayers.

2.5.1 Binary treatment

Figure 5 shows the event study coefficients on Move-up interacted with the event time indicators.

(The regression also includes Mover interacted with event time indicators.)

Figure 5: Event study: DDD, binary treatment
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Note: N=465662. Standard errors are clustered by city × research field. Sample includes stayers.

2.5.2 Continuous treatment

Figure 6 shows the event study coefficients on Size-diff interacted with the event time indicators.

(The regression also includes Mover interacted with event time indicators.)
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Figure 6: Event study: DDD, continuous treatment

-.1

-.05

0

.05

β(-5) β(-4) β(-3) β(-2) β(-1) β(0) β(1) β(2) β(3) β(4) β(5)

Note: N=465641. Standard errors are clustered by city × research field. Sample includes stayers.
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2.6 Event study using imputed data

In Section 11 I impute the missing observations (where inventors do not patent), using either

the origin or destination city. Here I rerun the event study results on the imputed sample,

which is more balanced than the original sample. As in Moretti, I include only moves where

the timing is identified; ie. we observe the inventor patenting in the origin and destination

cities in consecutive years.3

Using a DD with a binary treatment, for either origin (Figure 7) or destination (Figure 11)

imputation, gives a strange pattern with the coefficients being strongly negative except in t = 0.

One possible explanation is mechanical: the sample is constructed so that inventors patent in

the last year in the origin city (t = −1) and in the first year in the destination city (t = 0).

With imputation, we fill in patent=0 for missing observations, which correspond to years [-5,-2]

and [1,5]. This generates a negative correlation for those years relative to t = −1. But this

pattern holds only for the DD with a binary treatment, and doesn’t hold for the continuous

DD or the binary DDD. I don’t have an explanation for this.

2.6.1 Binary treatment: origin imputation

Figure 7 shows the DD event study coefficients on Move-up interacted with the event time

indicators.

Figure 8 shows the DDD event study coefficients on Move-up interacted with the event time

indicators.

3We could also include moves with unidentified timing, where there is a gap between patents in two different

cities; this would require using origin or destination imputation, which could lead to mechanical results. For

example, with origin imputation, we impute y=0, then a move occurs with y=1 in the destination city. This

generates a positive correlation between moving and patenting. Similarly, with destination imputation, y=1 in

the origin city, followed by an imputed y=0 for the destination city, generating a negative correlation between

moving and patenting. But this seems incomplete, since the event study uses the change in cluster size, not

merely moving.
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Figure 7: Event study: DD, binary treatment, origin imputation
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Note: N=27663. Standard errors are clustered by city × research field. Sample excludes stayers.

Figure 8: Event study: DDD, binary treatment, origin imputation
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Note: N=921927. Standard errors are clustered by city × research field. Sample includes stayers.
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2.6.2 Continuous treatment: origin imputation

Figure 9 shows the DD event study coefficients on Size-diff interacted with the event time

indicators.

Figure 9: Event study: DD, continuous treatment, origin imputation
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Note: N=27635. Standard errors are clustered by city × research field. Sample excludes stayers.

Figure 10 shows the DDD event study coefficients on Size-diff interacted with the event time

indicators.
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Figure 10: Event study: DDD, continuous treatment, origin imputation
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Note: N=921906. Standard errors are clustered by city × research field. Sample includes stayers.
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2.6.3 Binary treatment: destination imputation

Figure 11 shows the DD event study coefficients on Move-up interacted with the event time

indicators.

Figure 11: Event study: DD, binary treatment, destination imputation
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Note: N=27327. Standard errors are clustered by city × research field. Sample excludes stayers.

Figure 12 shows the DDD event study coefficients on Move-up interacted with the event

time indicators.
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Figure 12: Event study: DDD, binary treatment, destination imputation
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Note: N=907876. Standard errors are clustered by city × research field. Sample includes stayers.
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2.6.4 Continuous treatment: destination imputation

Figure 13 shows the DD event study coefficients on Size-diff interacted with the event time

indicators.

Figure 13: Event study: DD, continuous treatment, destination imputation
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Note: N=27309. Standard errors are clustered by city × research field. Sample excludes stayers.

Figure 14 shows the DDD event study coefficients on Size-diff interacted with the event time

indicators.
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Figure 14: Event study: DDD, continuous treatment, destination imputation
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Note: N=907854. Standard errors are clustered by city × research field. Sample includes stayers.
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2.7 Figure 5 non-event study

In Figure 5, Moretti performs a non-standard event study, including 5 leads and lags of time-

varying cluster size. Since there is no single treatment, it is misleading to present an event

study graph centered at t = 0, and to describe it as an event study with a single treatment

(“To interpret this figure, suppose that a change in cluster size takes place at time t = 0.”

p.3352) On the contrary, cluster size is changing in every time period. Hence, I am unclear how

this is informative in testing for pre-trends, with rising star inventors sorting into large cities.

The large effect for β0 seems partly explained by the effect size increasing in the productivity

of the sample. From Table 9 we know that the effect grows as the sample is limited to top

inventors. The average lifetime patents for the Figure 5 estimation sample is 23.5, while the

average in the full sample is 10.1. This makes sense, since we’re selecting on inventors who

have at least 12 patents (ignoring fractional attribution), since the estimation sample includes

inventors with at least 12 observations, to match the 11 regressors; two observations are needed

to identify the inventor fixed effect.

One question I have is whether it is appropriate to include leads/lags of X in an unbalanced

panel (since years where inventors do not patent are missing). Another issue with leads/lags is

inventors changing city, field, class, or firm.4

4Imputing missing observations would address the unbalanced panel.
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3 IV estimates

Moretti runs the IV regressions in first-differences, while the main OLS regressions are in levels.

This is not explicitly justified. Here I redo the IV regressions in levels, defining the instrument as

the number of inventors in other cities (in the same field), normalized by the number nationally

by field. Let Njf(−c)t be the number of inventors at firm j in research field f in all cities

excluding c in year t, and let Nft be the number in field f and year t. Let Djfct be an indicator

for firm j employing at least one inventor in city c and field f in year t, to capture firms active

in c. Then the IV is

IVjfct =
∑
s ̸=j

Dsfct

Nsf(−c)t

Nft

, (2)

where the sum is taken across all firms excluding j.

Table 1 shows that this produces a first stage, in contrast to the results using the corrected

first-differenced instrument fromWiebe (2023). However, the 2SLS estimates are again nonsignificant.5

5It might be interesting to run the first-differenced results on the imputed dataset, since this would avoid

restricting the estimation sample to observations where inventors patent in consecutive years.
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Table 1: Replication of Table 5: level instrument

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: 2SLS
Log size 0.0355 0.0209 -0.0012 0.1225∗∗ 0.0761 0.0314 -0.2685 -0.4457

(0.0347) (0.0976) (0.1232) (0.0542) (0.0568) (0.1083) (0.2463) (0.2948)
Observations 419753 419707 413037 413037 411853 388780 387842 375126
Panel B: First stage
IV 20.35∗∗∗ 10.91∗∗∗ 9.57∗∗∗ 9.99∗∗∗ 9.25∗∗∗ 6.15∗∗∗ 2.49∗∗∗ 2.43∗∗∗

(3.32) (2.95) (2.86) (2.81) (2.74) (1.71) (0.79) (0.75)
Observations 419753 419707 413037 413037 411853 388780 387842 375126
F-statistic 37.48 13.64 11.16 12.66 11.42 12.92 9.82 10.35
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the log number of patents in a year. The instrument is defined in levels instead of first-
differences. Fixed effects are the same as Table 3 in Moretti (2021b). Standard errors are clustered by city × research
field.
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4 Original OLS results

I reproduce the main fixed-effects regressions using OLS from Table 3. The results are very

similar but not identical, likely due to small changes in sample size.

In Column 9, I control for Firm × Year fixed effects, to make a within-firm-year comparison.

This reduces the effect size by 80%.

Table 2: Replication of Table 3 fixed-effects regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log size 0.0477∗∗∗ 0.0711∗∗∗ 0.0827∗∗∗ 0.0854∗∗∗ 0.0625∗∗∗ 0.0870∗∗∗ 0.0455∗∗∗ 0.0605∗∗∗ 0.0115

(0.0082) (0.0167) (0.0185) (0.0092) (0.0084) (0.0097) (0.0114) (0.0134) (0.0136)
Observations 932020 931984 923956 923956 923250 922413 921867 786670 686141
Adjusted R2 0.043 0.045 0.061 0.065 0.071 0.226 0.228 0.251 0.282
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes Yes
Inventor Yes Yes Yes Yes
City × year Yes Yes Yes
Firm Yes Yes
Firm × Year Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3, except for Column 9. Sample restricted to top 10% inventors, by lifetime patents.
Standard errors are clustered by city × research field.
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5 Heterogeneity by top inventors

The main results in Table 3 use the top 10% of inventors by lifetime patents. In Table 9,

Moretti reduces the sample from 100%, to top 25% of inventors by lifetime patents, and so

on, down to the top 0.5% of inventors. But he doesn’t test for the effect for low-productivity

inventors. In Table 3, I restrict the sample to the bottom 90% of inventors by lifetime patents.

The results are negative, implying that larger clusters reduce patenting. Note that running a

separate regression by subgroup means that fixed effects are not shared by above- and below-

90% inventors.

Table 3: Main results for bottom 90% inventors

(1) (2) (3) (4) (5) (6) (7) (8)
Log size -0.0313∗∗∗ -0.0623∗∗∗ -0.0498∗∗∗ -0.0473∗∗∗ -0.0545∗∗∗ -0.0137∗∗ -0.0466∗∗∗ -0.0376∗∗∗

(0.0068) (0.0102) (0.0102) (0.0060) (0.0055) (0.0065) (0.0081) (0.0092)
Observations 1906831 1906826 1898424 1898424 1898061 1138104 1137443 925421
Adjusted R2 0.138 0.140 0.171 0.172 0.182 0.403 0.404 0.377
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Sample restricted to bottom 90% inventors, by lifetime patents. Standard errors
are clustered by city × research field.

Instead of running a subsample regression, in Table 4 I use the full sample and interact

cluster size with an indicator for being a top 10% inventor. Now the effect for the bottom-90%

is 0, but the Column 8 coefficient for the top-10% is 3x smaller than the coefficient from the

original regression (0.0216+0.0026=0.0242 vs 0.0676). Hence, whether or not the fixed effects

are interacted with the Top 10% dummy makes a big difference for the main results. (Note

that running separate regressions by subgroup is equivalent to interacting the fixed effects by

the subgroup indicator.)

This poses a dilemma for Moretti: either the subsample regressions are correct, in which

case the negative effect for the bottom-90% must be explained, or the interaction regression is

correct, in which case the effect size for top inventors is much smaller.
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Table 4: Main results: heterogeneity by Top 10%

(1) (2) (3) (4) (5) (6) (7) (8)
Log size -0.0129∗∗ -0.0304∗∗∗ -0.0206∗ -0.0175∗∗∗ -0.0295∗∗∗ 0.0319∗∗∗ -0.0098 0.0026

(0.0065) (0.0115) (0.0116) (0.0063) (0.0056) (0.0074) (0.0092) (0.0108)

Log size × Top 10% 0.0266∗∗∗ 0.0272∗∗∗ 0.0306∗∗∗ 0.0300∗∗∗ 0.0293∗∗∗ 0.0204∗∗∗ 0.0198∗∗∗ 0.0216∗∗∗

(0.0068) (0.0068) (0.0070) (0.0071) (0.0072) (0.0044) (0.0043) (0.0046)

Top 10% 0.6536∗∗∗ 0.6551∗∗∗ 0.6651∗∗∗ 0.6611∗∗∗ 0.6559∗∗∗

(0.0336) (0.0337) (0.0342) (0.0344) (0.0349)
Observations 2838894 2838893 2831035 2831035 2830728 2072026 2071679 1741707
Adjusted R2 0.197 0.199 0.219 0.221 0.228 0.380 0.381 0.389
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Sample includes all inventors. Top 10% is collinear with the inventor fixed effect.
Standard errors are clustered by city × research field.
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6 Heterogeneity by movers and stayers

For the top 10% of inventors (measured by lifetime patents), 67% are movers, meaning they

change (modal) research field or city at least once. The remaining 33% are stayers, who

are observed only in the same cluster (city-field). Movers makes up 72% of all observations,

indicating that movers patent more than stayers, since observations are patents. Stayers are

28% of all observations.

Moretti includes firm fixed effects in Table 3, Column 8. 10% of mover observations and

15% of stayer observations are missing firm identifiers.

6.1 Do inventors move to larger clusters?

To test whether movers move to larger clusters, I compute the cluster size in the years before

and after an inventor moves. That is, I use the consecutive observations when an inventor

is observed in different clusters; note that the corresponding years may not be consecutive, if

there was a gap of more than one year. I find that the average size difference is very small and

statistically insignificant. Hence, on average, movers are not moving to larger clusters.

For stayers, I test whether cluster size changes over the course of their time in the data (that

is, between their first and last recorded patents). I find that, on average, cluster size decreases

by about 3% of the sample mean cluster size. I find almost exactly the same decrease when

defining cluster as cities (instead of city-field).

6.2 Heterogeneous treatment effects by movers and stayers

In Table 5 I interact cluster size with an indicator variable for having ever moved. Surprisingly,

the effect is smaller for movers.
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Table 5: Heterogeneity by movers and stayers

(1) (2) (3) (4) (5) (6) (7) (8)
Log size 0.0375∗∗∗ 0.0681∗∗∗ 0.0819∗∗∗ 0.0836∗∗∗ 0.0612∗∗∗ 0.1427∗∗∗ 0.0925∗∗∗ 0.1194∗∗∗

(0.0082) (0.0164) (0.0181) (0.0093) (0.0094) (0.0180) (0.0226) (0.0275)

Log size × Mover 0.0025 0.0029 0.0003 0.0011 0.0013 -0.0669∗∗∗ -0.0539∗∗∗ -0.0674∗∗∗

(0.0043) (0.0043) (0.0044) (0.0043) (0.0044) (0.0176) (0.0195) (0.0243)

Mover -0.1234∗∗∗ -0.1227∗∗∗ -0.1292∗∗∗ -0.1256∗∗∗ -0.1228∗∗∗

(0.0201) (0.0199) (0.0193) (0.0191) (0.0196)
Observations 931415 931379 923349 923349 922642 922413 921867 786670
Adjusted R2 0.048 0.050 0.066 0.069 0.075 0.226 0.228 0.251
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Mover is an indicator variable for having ever moved across city or field; it is collinear
with the inventor fixed effect. Standard errors are clustered by city × research field.
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7 Heterogeneity: field

In Appendix Table A2, Moretti tests for heterogeneity by field using subsample regressions

(recall that there are five fields). He finds large differences, with effects varying from 0.08 to 0.26.

(Since cluster size varies at the city-field-year level, a field-specific regression cannot include

city-year fixed effects. Moretti says in fn.18 that the baseline effect omitting this control is

slightly larger, at 0.1081.) In Table 6 I run an interaction regression, so that the fixed effects are

estimated using all fields. The results are quite different from the subsample regresions in Table

A2. Here, the effect is similar for Biology (omitted), Computer Science, Other Engineering,

and Semiconductors. This contrasts with the wide variation in the subsample regressions. The

one consistent finding is that the effect for Other Science is the smallest. This suggests that

sharing the fixed effects across fields makes a big difference for the estimates.

Table 6: Main results: field

(1) (2) (3) (4) (5) (6) (7)
Log size 0.0409∗∗∗ 0.1130∗∗∗ 0.1337∗∗∗ 0.1156∗∗∗ 0.0682∗∗∗ 0.0970∗∗∗ 0.1167∗∗∗

(0.0103) (0.0428) (0.0479) (0.0169) (0.0152) (0.0164) (0.0173)

Log size × Comp 0.0173∗ -0.0605 -0.0616 -0.0090 0.0340 0.0165 0.0181
(0.0093) (0.0762) (0.0859) (0.0261) (0.0248) (0.0253) (0.0280)

Log size × Other Eng 0.0131∗∗∗ -0.0460 -0.0590 -0.0365 -0.0084 -0.0139 -0.0155
(0.0050) (0.0479) (0.0525) (0.0232) (0.0201) (0.0216) (0.0238)

Log size × Other Sci 0.0061 -0.1177∗∗ -0.1372∗∗ -0.1197∗∗∗ -0.0789∗∗∗ -0.0791∗∗∗ -0.0903∗∗∗

(0.0061) (0.0511) (0.0544) (0.0266) (0.0237) (0.0212) (0.0220)

Log size × Semicon 0.0045 -0.0256 -0.0455 -0.0039 0.0383 0.0328 0.0150
(0.0190) (0.0578) (0.0629) (0.0355) (0.0353) (0.0438) (0.0477)

Observations 932020 931984 923956 923956 923250 922413 787320
Adjusted R2 0.043 0.045 0.061 0.065 0.071 0.226 0.249
Year Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes
Class × year Yes Yes Yes
Inventor Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. The omitted field is Biology and Chemistry. City-year fixed effects are
omitted. Standard errors are clustered by city × research field.
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8 Heterogeneity: time period

Moretti does not test whether the correlation between patents and cluster size varies over time.

With the sample covering 1971-2007, I test for heterogeneity using interactions and subsample

regressions for 1971-1983, 1984-1995, and 1996-2007. Table 7 shows that the effect size is

around 0.04 over 1971-83 and 1984-94, and increases to 0.075 for 1996-2007. Tables 8 - 10 run

the subsample regressions. Here, the correlation in Column 8 is small and insignificant over

1971-1983 and 1984-1994, and large over 1996-2007. The difference between the interaction

and subsample regressions suggests that the fixed effects are affecting the estimate differently

in the full sample.

Table 7: Main results: time period

(1) (2) (3) (4) (5) (6) (7) (8)
Log size 0.0474∗∗∗ 0.0700∗∗∗ 0.0798∗∗∗ 0.0820∗∗∗ 0.0606∗∗∗ 0.0818∗∗∗ 0.0314∗∗ 0.0414∗∗∗

(0.0117) (0.0187) (0.0217) (0.0102) (0.0089) (0.0097) (0.0125) (0.0159)

Log size × 1984-1995 -0.0074 -0.0058 -0.0062 -0.0011 -0.0008 0.0057 0.0055 0.0088
(0.0051) (0.0052) (0.0061) (0.0040) (0.0033) (0.0036) (0.0117) (0.0133)

Log size × 1996-2007 0.0034 0.0041 0.0079 0.0070 0.0043 0.0085∗ 0.0268∗∗ 0.0349∗∗∗

(0.0102) (0.0104) (0.0132) (0.0059) (0.0045) (0.0047) (0.0119) (0.0134)
Observations 932020 931984 923956 923956 923250 922413 921867 786670
Adjusted R2 0.043 0.045 0.061 0.065 0.071 0.226 0.228 0.251
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city × research field.
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Table 8: Main results: 1971-1983

(1) (2) (3) (4) (5) (6) (7) (8)
Log size -0.0144∗ -0.0367∗∗∗ -0.0249 -0.0260 -0.0220 0.0231 -0.0063 -0.0055

(0.0085) (0.0133) (0.0169) (0.0167) (0.0164) (0.0203) (0.0268) (0.0319)
Observations 151937 151892 145384 145384 145009 129823 129463 104175
Adjusted R2 0.037 0.040 0.066 0.066 0.068 0.244 0.245 0.253
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city × research field.

Table 9: Main results: 1984-1995

(1) (2) (3) (4) (5) (6) (7) (8)
Log size 0.0184∗∗ 0.0400∗∗ 0.0625∗∗∗ 0.0603∗∗∗ 0.0228∗ 0.0790∗∗∗ 0.0121 0.0187

(0.0083) (0.0182) (0.0200) (0.0177) (0.0135) (0.0159) (0.0181) (0.0210)
Observations 311789 311746 304562 304562 304380 283237 283052 234663
Adjusted R2 0.037 0.038 0.064 0.065 0.070 0.273 0.274 0.286
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city × research field.
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Table 10: Main results: 1996-2007

(1) (2) (3) (4) (5) (6) (7) (8)
Log size 0.0426∗∗∗ 0.0783∗∗∗ 0.1085∗∗∗ 0.1111∗∗∗ 0.1141∗∗∗ 0.1535∗∗∗ 0.0978∗∗∗ 0.1395∗∗∗

(0.0076) (0.0211) (0.0228) (0.0208) (0.0203) (0.0233) (0.0245) (0.0272)
Observations 468281 468235 461078 461078 460851 448028 447862 388210
Adjusted R2 0.047 0.050 0.072 0.072 0.076 0.275 0.277 0.301
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city × research field.
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9 Mechanism: geographic proximity?

One natural hypothesis for the mechanism underlying the main results is geographic proximity:

when close to other inventors, ideas can be passed around, leading to innovation. In this section,

I compare different sources of cluster size: own-city vs other-city (within field).6 If geographic

proximity is the key mechanism, then patenting should be less correlated with the number of

inventors in other cities (in the same field).

In Table 11, I regress patents on the number of inventors by city-field and the number

of inventors in the same field in other cities. The coefficient on own-city is positive, and

larger than the coefficient on other-city (in Columns 2-3). This is consistent with geographic

proximity being the main mechanism. However, the coefficient on other-city turns from positive

to negative with the inclusion of field-year fixed effects, and becomes more negative with the

inclusion of city-year fixed effects.

This seems to be a mechanical result from the fixed effects. Other-city size is defined as field

size - field-city size, so city-field size and other-city-field size are complements (and their sum is

total field size, ignoring the logarithm). A city that is a large share of the field will necessarily

have a small value of other-city size. The field-year fixed effect demeans other-city size by

the field-year average, which implies that a large city will have a negative demeaned value of

other-city size. If new patents occur in these large cities, then mechanically there is a negative

correlation between patenting and other-city size. (Similar reasoning applies for city-year fixed

effects: city-fields that are large relative to the field have a small other-city size, so taking the

city-year fixed effect means a negative demeaned value.)

6Note that I define these variables as counts, instead of normalizing (e.g., by dividing by the national count by

field). However, this is irrelevant when including the corresponding fixed effect, since log(a/b) = log(a)-log(b).
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Table 11: Horse race: own- vs other-city (within-field)

(1) (2) (3) (4) (5) (6) (7) (8)
Log size (city-field) 0.0505∗∗∗ 0.0843∗∗∗ 0.0956∗∗∗ 0.0720∗∗∗ 0.0493∗∗∗ 0.0753∗∗∗ 0.0184 0.0342∗∗

(0.0083) (0.0177) (0.0194) (0.0107) (0.0100) (0.0118) (0.0129) (0.0152)

Log size (other-city, field) 0.0898∗∗∗ 0.0588∗∗ 0.0543∗∗ -0.3674∗∗ -0.3486∗∗ -0.3757∗ -1.0898∗∗∗ -1.0989∗∗∗

(0.0221) (0.0260) (0.0272) (0.1729) (0.1734) (0.1929) (0.2671) (0.3225)
Observations 932643 932606 924507 924507 923800 922971 922409 787014
Adjusted R2 0.044 0.046 0.062 0.065 0.071 0.226 0.228 0.251
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city-field. Independent variables are log counts, instead
of log densities as in Table 3. The median number of inventors by own-city is 843, and the median number by other-city
is 29990.
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10 Mechanism: own-firm cluster size?

Here I compare cluster size from own-firm vs other-firm inventors (within city-field). If patenting

is correlated only with the number of inventors in an inventor’s own firm, then firm-level

strategies like defensive patenting could be driving the results. But if patenting is correlated

with the number of inventors at other firms, then we have evidence for positive spillover effects.

In Table 12, I regress patents on the number of inventors by own-firm and the number of

inventors by other-firm, both within city-field. The effect for own-firm is positive, but much

smaller than in Table 2. The effect for other-firm is larger, suggesting this is the main channel.

As with other-city, the effect for other-firm drops with the inclusion of field-year and city-year

fixed effects. The same mechanical effect seems to apply for own-firm vs other-firm cluster size.

Table 12: Horse race: own- vs other-firm (within city-field)

(1) (2) (3) (4) (5) (6) (7) (8)
Log size (own-firm) 0.0047∗∗ 0.0053∗∗∗ 0.0056∗∗∗ 0.0027 0.0011 0.0040∗∗ -0.0008 0.0169∗∗∗

(0.0019) (0.0020) (0.0021) (0.0020) (0.0020) (0.0017) (0.0016) (0.0038)

Log size (other-firm) 0.0384∗∗∗ 0.0443∗∗∗ 0.0563∗∗∗ 0.0189 0.0005 0.0095 -0.0526∗∗∗ -0.0355∗∗∗

(0.0104) (0.0163) (0.0178) (0.0120) (0.0110) (0.0096) (0.0104) (0.0107)
Observations 913505 913479 905545 905545 904828 903764 903233 769251
Adjusted R2 0.043 0.045 0.061 0.064 0.071 0.225 0.227 0.250
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Standard errors are clustered by city-field. Independent variables are log counts,
instead of log densities as in Table 3. The median number of inventors by own-firm is 15, and the median number
by other-firm is 764.
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11 Imputing missing observations

Moretti observes patents, and aggregates the patent data to the inventor-year level, by counting

patents for inventors with (potentially) multiple patents in the same year. This generates

missing observations during years when inventors do not patent, creating an imbalanced panel.

These missing observations should have patent=0, but the inventor’s city and field during that

year is unknown.

I find that 37% of inventor-cluster spells have a gap (of more than one year) between

consecutive observations (for example, an inventor patents in 2003 and 2005). The average gap

is 3.83 years, and the largest gap is 34 years. For the sample of top 10% of inventors, filling

in all missing observations would double the sample size. Decomposing by movers and stayers,

75% of missing observations are from movers and 25% are from stayers.

In Table A6, Moretti imputes missing observations for gaps of length 1 and 2, assigning

patent= 0 and the cluster from the last observation before the gap. For stayers, this is the

only choice (since cluster is unchanged before and after the gap). For movers, this form of

imputation could influence the results. In particular, if movers move to larger clusters, then

assigning the (smaller) origin cluster to imputed observations (with patent=0) could generate

a positive correlation between cluster size and patenting. Conversely, assigning the destination

cluster and patent=0 to imputed observations could generate a negative correlation.

I impute missing observations for gaps of all lengths, assigning either the origin or the

destination cluster. This should provide upper and lower bounds on imputation bias. As

mentioned above, I find that moving does not change cluster size, so imputation bias should be

small. Note that I follow Moretti and calculate cluster size before imputing missing observations

(fn 30); so cluster size does not count “inactive” inventors. Proper imputation would count

these inventors.

The results are in Tables 13 and 14. The coefficients are slightly larger than in Table 3.7

The effect in Column 9, controlling for firm-year fixed effects, is over 6x larger when using

imputed data. The effects are similar by origin and destination, indicating that imputation

bias is negligible. In Table A6, Moretti found that the effect size is increasing in the number of

imputed missing observations. So it makes sense that imputing all missing observations would

increase the effect even more.8

However, I’m not convinced by Moretti’s explanation, which is that imputing missing 0s

7In unreported results, I show that, on the original dataset (with y > 0), using log(1+patents) shrinks the

coefficients by one-third compared to log(patents). So the use of log(1+patents) here does not explain the larger

effects.
8Moretti made an error when imputing gaps of two years; his code only imputes one of the two years in the

gap. So Table A6, Column 3 is the effect when interpolating gaps of length 1 and one out of two years for gaps

of length 2.
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captures more of the extensive margin. For this sample of top inventors, the extensive margin

is closer to “an established inventor joining an R&D project in year t” rather than “becoming

an inventor”. (For comparison, the intensive margin would be something like “filing a second

patent from an R&D project, conditional on a first patent”.) Perhaps formally modelling the

intensive and extensive margins would be helpful. Moreover, most of the imputed observations

are from movers, and the effect for movers is smaller, which contradicts the larger effect size

observed here.

Table 13: Imputing by origin

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log size 0.0484∗∗∗ 0.0897∗∗∗ 0.0889∗∗∗ 0.0903∗∗∗ 0.0799∗∗∗ 0.0814∗∗∗ 0.0933∗∗∗ 0.0954∗∗∗ 0.0731∗∗∗

(0.0031) (0.0064) (0.0071) (0.0049) (0.0044) (0.0041) (0.0041) (0.0043) (0.0045)
Observations 1855222 1855189 1850644 1850644 1850057 1849391 1849205 1683947 1412108
Adjusted R2 0.051 0.053 0.072 0.074 0.083 0.229 0.231 0.265 0.304
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes Yes
Inventor Yes Yes Yes Yes
City × year Yes Yes Yes
Firm Yes Yes
Firm × Year Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3, plus Column 9. Dependent variable is log(1+patents). Missing observations are imputed
by assigning the origin cluster and patent=0. Standard errors are clustered by city × research field.

In unreported results, I test for heterogeneity by movers and stayers on the imputed samples.

I find that the negative interaction effect for Movers is slightly smaller compared to using the

original sample. The results are similar for origin and destination imputation.
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Table 14: Imputing by destination

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log size 0.0524∗∗∗ 0.1035∗∗∗ 0.1042∗∗∗ 0.1044∗∗∗ 0.0902∗∗∗ 0.0884∗∗∗ 0.0945∗∗∗ 0.0908∗∗∗ 0.0724∗∗∗

(0.0033) (0.0064) (0.0067) (0.0040) (0.0037) (0.0035) (0.0037) (0.0038) (0.0045)
Observations 1854452 1854425 1849942 1849942 1849332 1848666 1848459 1666297 1372161
Adjusted R2 0.049 0.051 0.070 0.072 0.081 0.227 0.228 0.261 0.297
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes Yes
Inventor Yes Yes Yes Yes
City × year Yes Yes Yes
Firm Yes Yes
Firm × Year Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3, plus Column 9. Dependent variable is log(1+patents). Missing observations are imputed
by assigning the destination cluster and patent=0. Standard errors are clustered by city × research field.
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12 Aggregation bias

To construct the inventor-year panel, Moretti aggregates from patent data to inventor-year level

data. If an inventor is in multiple clusters in one year, Moretti assigns them to their modal

cluster. Patents from all clusters are assigned to the modal cluster. This aggregation could

generate a mechanical bias, if modal clusters are larger. Using inventor-cluster-year data would

eliminate this bias, since no patents are reassigned across clusters. Hence, if modal clusters are

larger, we should expect smaller effects.9

I repeat the main analysis, but aggregate the patent data to the inventor-city-field-year level.

This allows inventors to have observations in multiple clusters in the same year. While Moretti

assigns the modal city, field, class, and firm to an inventor-year obsevation, here I assign only

the modal class and firm to an inventor-city-field-year observation. (So when inventors patent at

multiple firms/classes in the same cluster-year, I assign those patents to the modal firm/class.)

In Table 15 I find effects that are slightly smaller when aggregating to the inventor-cluster-year

level.

Table 15: Aggregating to inventor-cluster-year

(1) (2) (3) (4) (5) (6) (7) (8)
Log size 0.0564∗∗∗ 0.0307∗∗ 0.0412∗∗∗ 0.0438∗∗∗ 0.0270∗∗∗ 0.0566∗∗∗ 0.0337∗∗∗ 0.0538∗∗∗

(0.0071) (0.0132) (0.0145) (0.0080) (0.0075) (0.0076) (0.0093) (0.0104)
Observations 1122130 1122108 1114161 1114161 1113502 1113009 1112518 956389
Adjusted R2 0.061 0.063 0.083 0.086 0.092 0.252 0.253 0.270
Year Yes Yes Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes Yes Yes
Field Yes Yes Yes Yes Yes Yes Yes Yes
Class Yes Yes Yes Yes Yes Yes Yes Yes
City × field Yes Yes Yes Yes Yes Yes Yes
City × class Yes Yes Yes Yes Yes Yes
Field × year Yes Yes Yes Yes Yes
Class × year Yes Yes Yes Yes
Inventor Yes Yes Yes
City × year Yes Yes
Firm Yes
Firm × Year

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Replication of Table 3. Patent data is aggregated to inventor-cluster-year level. Standard errors
are clustered by city × research field.

9An alternative explanation is that large clusters cause patenting, so inventors who live in large clusters are

more likely to patent there (making it their modal cluster), and also more likely to patent in other clusters

(making them multi-cluster inventors). On this view, attributing patents to the modal cluster is the correct

way of estimating the effect of cluster size on innovation.
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It would be interesting to use the raw patent data, with inventors in different clusters in the

same year, instead of aggregating to the inventor-year level. With finer data, we could include

inventor-year fixed effects to make a within-inventor-year comparison (testing whether, for a

given year, the same inventor patents more in larger clusters).

12.1 Combining disaggregation and imputation

Since imputing missing observations increases the effect size, and disaggregating reduces the

effect size, we should expect that imputing missing observations at the inventor-cluster-year

level would lead to effect sizes in between the two. However, this is computationally expensive,

since it involves a Cartesian product of inventor, city, field, and year. For inventor-year,

rectangularizing creates 48M observations; inventor-city-field-year would create 43B observations.

There are more efficient ways to do this, e.g., filling in only clusters from an inventor’s history,

instead of all possible clusters.
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13 Varying the time unit

In Table A7, Moretti varies the time unit of the data, from 1-month to 3-year periods. As with

imputation, the motivation is to address missing observations when inventors do not patent in

a given time period. With a very short time unit (one second), most observations would be

missing; and with a long time unit (one century), no observations would be missing. Moretti

claims that these missing observations create downward bias, because of the missing extensive

margin when 0s are not observed. This is consistent with the finding in Table A7, where the

effect grows larger with the length of the time unit.

I am not persuaded by this argument. Technically, no zeros are added to the data, so no

extensive margin is captured. Instead, the intensive margin is defined as a function of the time-

unit. When a different time unit is used, the intensive margin changes. The pattern of effect

sizes increasing with the length of the time unit could be explained simply by the variation in

patents shrinking to nothing as the time unit shortens (since patent=1 for all observations, in

the limit), and increasing as the time unit lengthens. (Although this model does not predict a

negative correlation at the shorter time units.)

An alternative explanation for the negative results in short time units is that cluster size

is defined using successful inventors in the current period. With shorter time units, this

definition may be too restrictive, since inventors may be present in a cluster and contribute

to agglomeration effects, but not patent (and hence have a missing row and not be counted in

cluster size). That is, in reality, the inventor is present in the cluster, but they are not measured

as such in the data. Hence, large clusters (where agglomeration effects create many patents)

with a small measured size would generate a negative correlation between measured cluster size

and patents. Instead, cluster size should count inactive inventors, or successful inventors from

the previous T periods (for some T ).

Furthermore, there is a coding issue with Table A7. Moretti does not recalculate cluster

size at the level of the new time unit, but uses the baseline 1-year cluster size; he assigns the

1-year value to months within a year, and the first 1-year value in a j-year unit to that unit.

(E.g., assign the value for 2000 to the 2-year unit covering 2000-2001.) Note that Table A7

Panel A uses the top 10% of inventors, while Panel B uses the top 1% (defined using lifetime

patents).

I recalculate cluster size at the appropriate time unit in Table 16. While Moretti found

negative effects for 1- and 2-month time units, I find negative and significant effects for 1- to

3-month time units. Similar to the original, the effect size continues to grow as the time unit

lengthens. In contrast to the original, the coefficients are larger in magnitude: the 1-month

effect is -0.092 (vs -0.025) and the 3-year effect is 0.198 (vs 0.171).
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Table 16: Table A7: correct cluster size

(1) (2) (3) (4) (5) (6) (7)
1-Month 2-Month 3-Month 6-Month 1-Year 2-Year 3-Year

Log size -0.0921∗∗∗ -0.0666∗∗∗ -0.0421∗∗∗ 0.0065 0.0605∗∗∗ 0.1511∗∗∗ 0.1977∗∗∗

(0.0043) (0.0060) (0.0072) (0.0093) (0.0134) (0.0174) (0.0246)
Observations 1242867 1181583 1120150 974677 786670 573439 461799
Adjusted R2 0.344 0.311 0.296 0.271 0.251 0.225 0.216

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is log(patents) per time unit. Patent data is aggregated to inventor-
time level. In constrast to Moretti, I calculate cluster size and time fixed effects using the
corresponding time unit. Fixed effects as in Table 3, Column 8. Standard errors are clustered by
city × research field. The corresponding coefficients in Table A7 are -0.0248, -0.0120, 0.000149,
0.0297, 0.0676, 0.134, and 0.171.
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14 Other issues

Moretti assigns multi-cluster inventors (who patent in different clusters in the same year) to

their modal cluster, and claims to break ties randomly in multi-modal cases. However, he

randomizes independently for city, field, class, etc., using egen mode separately by dimension.

This can assign inventors to non-existent clusters. For example, for a cluster {city, field}, if an
inventor is in clusters {A,1} and {B,2} in the same year, Moretti’s independent randomization

could assign them to {A,2} or {B,1}, even if those clusters never occur in the data. This

problem probably biases his results towards zero, because it adds noise. It’s also probably a

small issue, because the number of ties is small.

Moretti breaks ties ‘randomly’ by using Stata’s egen mode, maxmode function, which breaks

ties by choosing the largest mode. This is not actually random.

Moretti drops inventors with more than three cities in the same year. This is not justified in

the paper. By construction, these are highly productive inventors, since they patent in multiple

cities per year.

Moretti implies that he first aggregates the patent data to inventor-year level data (by

counting patents and assigning an inventor to their modal cluster), and then calculates cluster

size by counting the number of inventors per cluster-year (as a share of all inventors by

field-year). However, his code first calculates cluster size on the disaggregated data, and

then aggregates the patent data to inventor-year level. This counts multi-cluster inventors

as belonging to multiple clusters, and increases the size of non-modal clusters (relative to the

method described in the text). The opposite approach would first assign inventors to their

modal cluster, and then calculate cluster size; this increases the size of modal clusters.10

10Note that the aggregation bias discussed above is about patents per inventor: multi-cluster inventors have

all of their patents assigned to the modal cluster. The issue here is about inventors per cluster.
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15 Coding issues

• The event study in Figure 6 estimates β0 using time-varying cluster size, instead of

interacting with a time indicator for t = 0. (reg23.do)

• Figure 6 lists the coefficients in reverse order, from β5 to β−5. (reg23.do)

• When constructing the instrument used in Table 5, Moretti does not sort the data by

city, leading to first-differences taken across cities (instead of within-city and over time).

(iv new.do)

• The code to impute missing observations for gaps of two years only imputes one of the

two years. (data 3.do)

• When imputing missing observations, the code should recalculate cluster size to include

non-patenting inventors. (data 3.do)

• For inventors with multiple modal clusters in the same year, Moretti claims to assign

them randomly to one of the modes, but the code is not actually random. (data 3.do)

• The code to vary the time unit in Table A7 does not recalculate cluster size at the level

of the new time unit. (data 4.do)

• When calculating cluster size excluding members of an inventor’s team (co-authors on the

same patent), the code subtracts total team size (including co-authors in other cities),

instead of the number of co-authors in the same city. (density team.do)

• The cleaning code uses many-to-many merges with a nonunique sort order, which creates

a different sample for each run of the code. The is because merge sorts the data, and

sort randomly orders the data before sorting, creating a random order within tied values.

(create COMETS Patent ExtractForEnrico.do)

– Moretti mentions ”the patent assignee/owner”, implying the assignee is unique

(p.3334). This is not true, as there can be multiple assignees per patent. Moretti

says that each patent is assigned to one field (p.3334). This is not true, since patents

can be assigned to multiple fields. (Moretti also says that patents are assigned to

one class, which is not true; but this does not cause problems in the code, since he

keeps only the first listed class.)
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