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Economists want to show that our results are robust, like in Table 1 below: Column
1 contains the baseline model, with no covariates, and Column 2 controls for z. Because
the coefficient on X is stable and significant across columns, we say that the effect is
robust.

Table 1: Robust results

(1) (2)

X −0.375∗∗ −0.380∗∗

(0.156) (0.153)
z 1.076∗∗∗

(0.159)

Observations 1,000 1,000
Adjusted R2 0.005 0.048

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The twist: I p-hacked this result, using data where the true effect of X is zero.
In this post, I show that it can be easy to p-hack a robust result like this. Here’s the

basic idea: first, p-hack a significant result by running regressions with many different
treatment variables, where the true treatment effects are all zero. For 20 regressions,
we expect to get one false positive: a result with p < 0.05. Then, using this significant
treatment variable, run a second regression including a control variable, to see whether
the result is robust to controls.

It turns out that the key to p-hacking robust results is to use control variables that
have a low partial-R2. These variables don’t have much influence on our main coefficient
when excluded from the regression, and also have little influence when included. In
contrast, controls with high partial-R2 are more likely to kill a false positive. Lesson:
high partial-R2 controls are an effective robustness check against false positives.
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1 Setup

Let’s see how this works. Consider data for i = 1, ..., N observations generated accord-
ing to

yi =
K∑
k=1

βkXk,i + γzi + εi. (1)

We have K potential treatment variables, X1,i to XK,i, and a control variable zi. I
draw Xk,i ∼ N(0, 1), zi ∼ N(0, 1), and εi ∼ N(0, 1), so that Xk,i, zi, and εi are all
independent, but could be correlated in the sample. I set βk = 0 for all k, so that Xk

has no effect on y, and the true model is

yi = γzi + εi. (2)

I’m going to p-hack using the Xk’s, running K regressions and selecting the k∗

with the smallest p-value. I p-hack the baseline regression of y on Xk, by running K
regressions of the form

yi = α1,k + β1,kXk,i + νi. (3)

I use the ‘1’ subscript to indicate that this is the baseline model in Column 1. Out of
these K regressions, I select the k∗ with the smallest p-value on β1. That is, I select
the regression

yi = α1,k∗ + β1,k∗Xk∗,i + νi. (4)

When K ≥ 20, we expect β̂1,k∗ to have p < 0.05, since with a 5% significance level (i.e.,
false positive rate), the average number of significant results is 20× 0.05 = 1. This is
our p-hacked false positive.

To get a robust sequence of regressions, I need my full model including z to also
have a significant coefficient on Xk∗,i. To test this, I run my Column 2 regression:

yi = α2,k∗ + β2,k∗Xk∗,i + γzi + εi (5)

Given that we p-hacked a significant β̂1,k∗ , will β̂2,k∗ also be significant?

2 Homogeneous β = 0

First, I show a case where p-hacked results are not robust. I use the data-generating
process from above with β = 0.

When regressing y on Xk in the p-hacking step, we have

yi = α1,k + β1,kXk,i + νi, (6)

where

νi =
K∑
j 6=k

β1,jXj,i + γzi + εi

= γzi + εi

(7)
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We estimate the slope coefficient as

β̂1,k =
Ĉov(Xk, y)

V̂ ar(Xk)
=
γĈov(Xk, z) + Ĉov(Xk, ε)

V̂ ar(Xk)
. (8)

Since β = 0, we should only find a significant β̂1,k due to a correlation between Xk and
the components of the error term νi:

1. γĈov(Xk, z)

2. Ĉov(Xk, ε)

When γĈov(Xk, z) is the primary driver of β̂1,k, controlling for z in Column 2 will kill
the false positive.

Turning to the full regression in Column 2, we get

β̂2,k =
Ĉov(û, y)

V̂ ar(û)
=
Ĉov((Xk − λ̂1z), ε)

V̂ ar(û)
=
Ĉov(Xk, ε)− λ̂1Ĉov(z, ε)

V̂ ar(û)
. (9)

This is from the two-step Frisch-Waugh-Lovell method, where we first regress Xk on z
(Xk = λ0 + λ1z + u) and take the residual û = Xk − λ̂0 − λ̂1z. Then we regress y on
û, using the variation in Xk that’s not due to z, and the resulting slope coefficient is
β̂2,k.1 We can see that controlling for z literally removes the γĈov(Xk, z) term from
our estimate.

Hence, to p-hack robust results, we want β̂1,k to be driven by Ĉov(Xk, ε), since

that term is also in β̂2,k. If we have a significant result that’s not driven by z, then
controlling for z won’t affect our significance.

2.1 Simulations

Setting K = 20, N = 1000, and γ = 1, I perform 1000 replications of the above
procedure: I run 20 regressions, select the most significant Xk∗ and record the p-value
on β̂1,k∗ , then add z to the regression and record the p-value on β̂2,k∗ . As expected
when using a 5% significance level, I find that out of the K regressions in the p-hacking
step, the average number of significant results is 0.05. I find that β̂1,k∗ is significant
in 663 simulations (=66%). But only 245 simulations (=25%) have both a significant
β̂1,k∗ and a significant β̂2,k∗ , meaning that only 37% (=245/663) of p-hacked Column 1

results have a significant Column 2. So in the β = 0 case, we infer that Ĉov(Xk, ε) is

small relative to γĈov(Xk, z). With these parameters, it’s not easy to p-hack robust
results.

1Ĉov(û, y) = Ĉov(û, γz + ε) = γĈov(û, z) + Ĉov(û, ε) = 0 + Ĉov(û, ε), since the residual û is
orthogonal to z.
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Figure 1: Shares of β̂1,k, varying with γ
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Figure 1 repeats this process for a range of γ’s. I plot the shares of γĈov(Xk, z)

and Ĉov(Xk, ε) in β̂1,k.2 We see that when γ = 0, γĈov(Xk, z) has 0 weight, but its
share increases quickly. Closely correlated with this share is the fraction of significant
results losing significance after controlling for z. Specifically, this is the fraction of
simulations with a nonsignificant β̂2,k, out of the simulations with a significant β̂1,k.

And even more tightly correlated with γĈov(Xk, z) is the partial R2 of z.3 Intuitively,
as γ increases, the additional improvement in model fit from adding z also increases,
which by definition increases R2(z). Hence, R2(z) turns out to be a useful proxy for

the share of γĈov(Xk,i, zi), which we can’t calculate in practice. Lesson: when partial-
R2(z) is large, controlling for z is an effective robustness check for false positives. This

is because a large γĈov(Xk, z) implies both (1) a large R2(z); and (2) that z is more
likely to be the source of the false positive, and hence controlling for z will kill it. So
now we have a new justification for including control variables, apart from addressing
confounders: to rule out false positives driven by coincidental sample correlations.

3 Heterogeneous βi ∼ N(0, 1)

However, you might think that β = 0 is not a realistic assumption. As Gelman says:
“anything that plausibly could have an effect will not have an effect that is exactly
zero.” So let’s consider the case of heterogeneous βi, where each individual i has their
own effect drawn from N(0, 1). For large N , the average effect of X on y will be 0, but
this effect will vary by individual. This is a more plausible assumption than β being
uniformly 0 for everyone. And as we’ll see, this also helps for p-hacking, by increasing
the variance of the error term.

Here we have data generated according to

yi =
K∑
k=1

βk,iXk,i + γzi + εi, (10)

where βk,i ∼ N(0, 1).
Then, when regressing y on Xk, we have

yi = α1,k + δ1,kXk,i + vi, (11)

where

vi = −δ1,kXk,i + βk,iXk,i +
K∑
j 6=k

βj,iXj,i + γz + εi. (12)

2Note that these terms can be negative, so this is not strictly a share in [0, 1]. When the terms in
the denominator almost cancel out to 0, we get extreme values. Hence, for each γ, I take the median
share across all simulations, which is well-behaved.

3R2(z) =
∑

û2
i−

∑
v̂2
i∑

û2
i

, where û2i is the residual from the baseline model, and v̂2i is the residual from

the full regression (where we control for z). In other words, partial R2(z) is the proportional reduction
in the sum of squared residuals from adding z to the model.
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When effects are heterogeneous (i.e., we have βk,i varying with i), a regression model
with a constant slope δ1,k is misspecified. To emphasize this, I include −δ1,kXk,i in the
error term.4

The estimated slope coefficient is

δ̂1,k =
Ĉov(Xk,i, yi)

V̂ ar(Xk,i)

=

∑K
j=1 Ĉov(Xk,i, βj,iXj,i) + γĈov(Xk,i, zi) + Ĉov(Xk,i, ε)i

V̂ ar(Xk,i)

(13)

From Aronow and Samii (2015), we know that the slope coefficient converges to a
weighted average of the βk,i’s:

δ̂1,k →
E[wiβk,i]

E[wi]
, (14)

where wi are the regression weights: the residuals from regressing Xk on the other
controls. In this case, as we’re using a univariate regression, the residuals are simply
demeaned Xk (when regressing X on a constant, the fitted value is X̄).

Because βk,i ∼ N(0, 1), we have E[wiβk,i] = 0 and hence δ̂1,k converges to 0. So any

statistically significant δ̂1,k that we estimate will be a false positive.

There are three terms that make up δ̂1,k and could drive a false positive.

1.
∑K

j=1 Ĉov(Xk,i, βj,iXj,i)

2. γĈov(Xk, z)

3. Ĉov(Xk, ε)

Now we have a new source of false positives, case (1), due to heterogeneity in βk,i.
Note that controlling for z will only affect one out of three possible drivers, so now we
should expect our false positives to be more robust to control variables, compared to
when β = 0. To see this, note that when controlling for z in the full regression, we
have

δ̂2,k =
Ĉov(ûi, yi)

V̂ ar(ûi)

=

∑K
j=1 Ĉov(Xk,i − λ̂1zi, βj,iXj,i) + Ĉov(Xk,i − λ̂1zi, εi)

V̂ ar(ûi)

=

∑K
j=1 Ĉov(Xk,i, βj,iXj,i) + Ĉov(Xk,i, εi)

V̂ ar(ûi)
− λ̂1

[∑K
j=1 Ĉov(zi, βj,iXj,i) + Ĉov(zi, εi)

]
V̂ ar(ûi)

(15)

4We could write βk,i = β̄k,i + (βk,i − β̄k,i) := bk + bk,i, and then have yi = α1,k + bkXk,i + vi, with

vi = bk,iXk,i +
∑K

j 6=k βj,iXj,i + γzi + εi. However, b̂k does not generally converge to bk = β̄k,i, as I
discuss below.
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Here û is the residual from a regression of Xk on z: Xk = λ0 + λ1z+ u. We obtain δ̂2,k
by regressing y on û, via FWL, and using the variation in Xk that’s not due to z.

Comparing δ̂1,k to δ̂2,k, we see that
∑K

j=1 Ĉov(Xk,i, βj,iXj,i) + Ĉov(Xki , εi) shows up

in both estimates. Hence, if our p-hacking selects for a δ̂1,k with a large value of these

terms, we’re also selecting for the majority of the components of δ̂2,k. In contrast to

the β = 0 case, now we should expect γĈov(Xk,i, zi) to be dominated, and significance
in Column 1 should carry over to Column 2.

3.1 Simulations

I repeat the same procedure as before, running K = 20 regressions of y on Xk and
z, taking the Xk with the smallest p-value, Xk∗ , and then running another regression
while excluding z. Again, I use γ = 1 and perform 1000 replications. Here I use robust
standard errors to address heteroskedasticity.

I find that δ̂1,k∗ is significant in 650 simulations (=65%). But this time, 569 simu-

lations (=57%) have both a significant δ̂1,k∗ and a significant δ̂2,k∗ . So 88% (=569/650)
of p-hacked Column 1 estimates also have a significant Column 2. Compare this to
37% in the β = 0 case. That’s what I call p-hacking a robust result! We infer that
γĈov(Xk,i, zi) is too small relative to the other components for its presence or absence
to affect our estimates very much.

To illustrate how δ̂1,k is determined, I plot the shares of its three constituent terms

while varying γ.5 As shown in Figure 2, when γ is small, most of the weight in δ̂1,k is

from
∑K

j=1 Ĉov(Xk,i, βj,iXj,i), indicating that its K terms provide ample opportunity
for correlations with Xk∗,i. But as γ increases, this share falls, while the share of

γĈov(Xk,i, zi) rises linearly. The share of Ĉov(Xk,i, εi) is small and decreases slightly.
Looking at robustness, we see that the fraction of significant results losing significance
rises much more slowly than in the β = 0 case. And we again see a tight link between
partial-R2(z) and the share of z in δ̂1,k.6

Overall, we can see why controlling for z is less effective with heterogeneous effects:
δ̂1,k is mostly not determined by γĈov(Xk,i, zi), so removing it (by controlling for z)
has little effect. In other words, when variables have low partial-R2, controlling for
them won’t affect false positives.

5Similar results hold when varying V ar(βi) or V ar(ε).
6Note that the overall R2 in Column 1 is irrelevant. For α = 0.05, we will always have a false

positive rate of 5% when the null hypothesis is true. Controlling for z is effective when γĈov(Xk,i, zi)

has a large share in δ̂1,k. And a large share also means that R2(z) is large. This is true whether the
overall R2 is 0.01 or 0.99, since partial R2 is defined in relative terms, as the decrease in the sum of
squared residuals relative to a baseline model.
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Figure 2: Shares of δ̂1,k and robustness
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4 Conclusion

In general, economists think about robustness in terms of addressing potential con-
founders. I haven’t seen any discussion of robustness to false positives based on coinci-
dental sample correlations. This is possibly because it seems hopeless: we always have
a 5% false positive rate, after all. But as I’ve shown, adding high partial-R2 controls
is an effective robustness check against p-hacked false positives.7 So we have a new
weapon to combat false positives: checking whether a result remains significant as high
partial-R2 controls are added to the model.

7Note that this holds regardless of which regression is p-hacked. Here, I’ve p-hacked the base-
line regression. But the results are actually identical when you work backwards, p-hacking the full
regression and then excluding z.
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